Final

Water Supply Well Report for Pelham Range

Fort McClellan Calhoun County, Alabama

Prepared for:

U.S. Army Corps of Engineers, Mobile District 109 St. Joseph Street Mobile, Alabama 36602

Prepared by:

Shaw Environmental, Inc. 312 Directors Drive Knoxville, Tennessee 37923

Task Order CK05 Contract No. DACA21-96-D-0018 Shaw Project No. 774645

May 2003

Revision 1

Table of Contents_____

List o	f Tabl	es	ii
List o	f Figu	ires	ii
List o	f Acro	onyms	iii
1.0	Intro	duction	1
		nodology	
	2.1	Sample Collection	1
	2.2	Surveying of Well Locations	
	2.3	Analytical Program	2
	2.4	Sample Preservation, Packaging, and Shipping	
3.0	Sum	mary of Analytical Results	3
	3.1	Security Operations Test Site	
	3.2	Rideout Hall Building 8801	4
	3.3	Range 57	5
	3.4	SOTS Administration Building 8203	5
4.0	Sum	mary and Conclusions	6
5.0	Refe	rences	6

Appendix A – Sample Collection Logs and Analysis Request/Chain-of-Custody Records

Appendix B – Well Development Log for SOTS Well Resample

Appendix C – Survey Data

Appendix D – Summary of Validated Analytical Data

List of Tables _____

Table	Title	Follows Page
1	Groundwater Field Parameters	2
2	Groundwater Analytical Results	3

List of Figures _____

Figure	Title	Follows Page
1	Vicinity Map	1
2	Water Supply Well Location Map	1

List of Acronyms

EPA U.S. Environmental Protection Agency

FTMC Fort McClellan IT IT Corporation

mg/L milligrams per liter

MOA Memorandum of Agreement NTU nephelometric turbidity unit

SAIC Science Applications International Corporation SAP installation-wide sampling and analysis plan

Shaw Shaw Environmental, Inc.

SOTS Security Operations Test Site

SSSL site-specific screening level

SVOC semivolatile organic compound

TAL target analyte list

USACE U.S. Army Corps of Engineers
UTES Unit Training and Equipment Site

VOC volatile organic compound

1.0 Introduction

This report summarizes the methodology, results, and conclusions for the sampling of four water supply wells at Pelham Range in Calhoun County, Alabama. These water supply wells were sampled by Shaw Environmental, Inc. (Shaw) (formerly IT Corporation [IT]) to meet requirements specified in a memorandum of agreement (MOA) between the U.S. Army and the Alabama Army National Guard. The water supply wells are located at the following facilities/areas within Pelham Range:

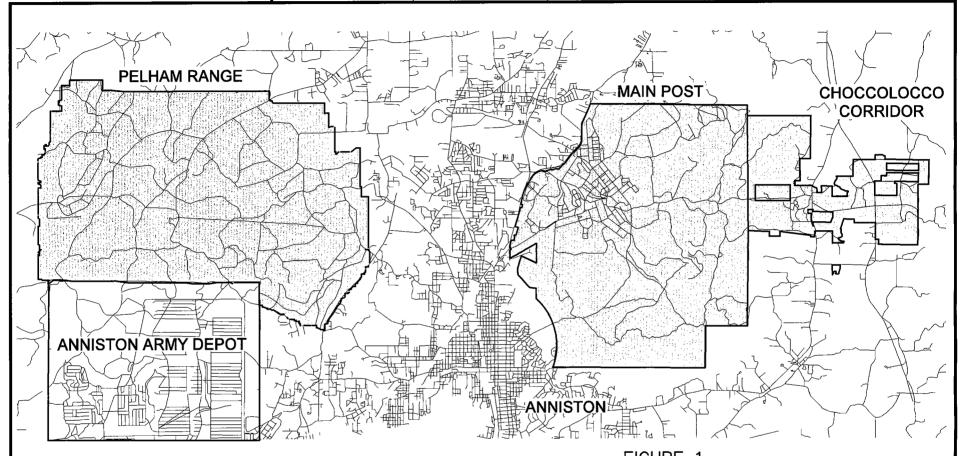
- Security Operations Test Site (SOTS)
- SOTS Administration Building 8203
- Rideout Hall Building 8801
- Range 57.

In addition, a fifth water supply well was located at the Unit Training and Equipment Site (UTES); however, it was not sampled because it had been previously abandoned.

Pelham Range is approximately 22,245 acres in size and is located 5 miles west of the Main Post of Fort McClellan (FTMC). Pelham Range adjoins the Anniston Army Depot along its southern boundary (Figure 1). Pelham Range is an active training area used for artillery firing, smoke operations training, and field training exercises. The purpose of this report is to assess whether activities at Pelham Range have affected the water supply wells. The locations of the water supply wells are shown on Figure 2.

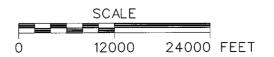
2.0 Methodology

This section summarizes the activities conducted by Shaw at the water supply wells sampled at Pelham Range (Figure 2).


2.1 Sample Collection

Each of the four wells sampled at Pelham Range were equipped with a dedicated submersible pump and an in-line potassium hypochlorite system. Before purging each well, the in-line potassium hypochlorite system was disconnected. Water levels in the water supply wells were not measured because of their protective well heads and dedicated pumps; therefore, calculations could not be made to estimate the well casing volume. Therefore, the wells were purged for an additional 30 minutes after stabilization of the water temperature, pH, specific conductivity, dissolved oxygen, and turbidity. After the additional purge time elapsed, the wells were

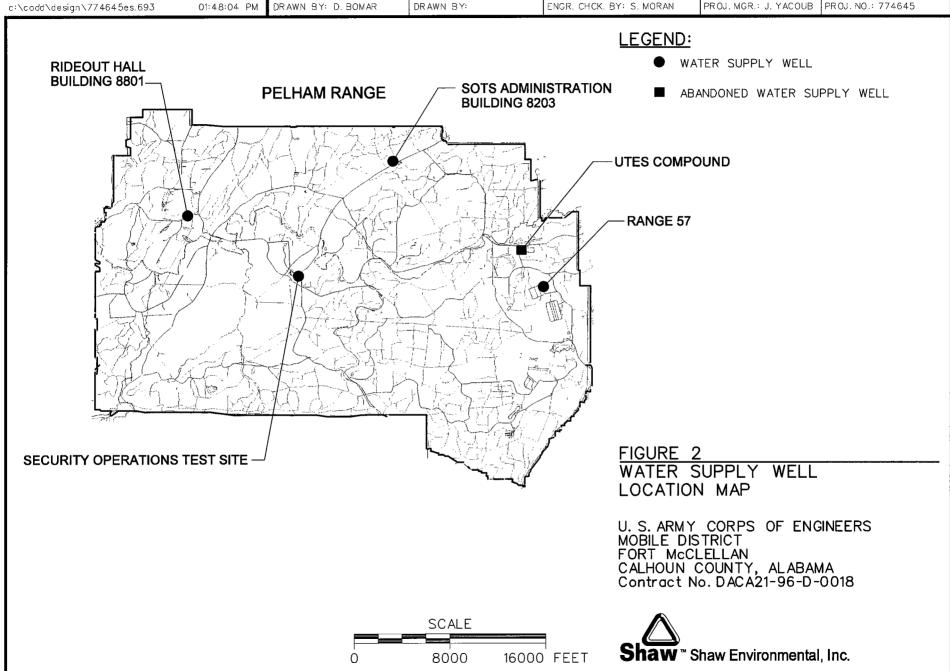
dbomar c:\cadd\design\774645es.692


05/19/03 10:24:49 AM

STARTING DATE: 12/14/00 DATE LAST REV.: DRAFT. CHCK. BY: INITIATOR: J. REMO DWG. NO.: \774645 es. 692
DRAWN BY: D. BOMAR DRAWN BY: ENGR. CHCK. BY: S. MORAN PROJ. MGR.: J. YACOUB PROJ. NO.: 774645

FIGURE 1 VICINITY MAP

U. S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT FORT McCLELLAN CALHOUN COUNTY, ALABAMA Contract No. DACA21-96-D-0018



dbomar

c:\cadd\design\774645es.693

05/20/03

1	STARTING DATE: 12/14/00	DATE LAST REV.:	DR AFT, CHCK, BY:	INITIATOR: J. REMO	DWG. NO.: \774645es.693
	DRAWN BY: D. BOMAR	DRAWN BY:	ENGR. CHCK. BY: S. MORAN	PROJ. MGR.: J. YACOUB	PROJ. NO.: 774645

sampled. The Rideout Hall water supply well was not sampled in this manner because well went dry after 68 gallons were purged. The well was then allowed to recharge for approximately 45 minutes prior to sampling.

Finding suitable points at which to sample these water supply wells was problematic. The well at Range 57 and the well at SOTS Administrative Building 8203 were sampled using the existing garden hose that was connected to a water spigot near the wellhead. The sample from the Rideout Hall water supply well was collected via a spigot located outside of the well house. The sample from the SOTS water supply well was collected from a kitchen faucet inside the facility because no other location was accessible for sampling. Appendix A contains the sample collection logs and chain-of-custody records.

The water supply well at the SOTS facility was resampled in February 2003 because the initial sample was turbid. Prior to sampling, the dedicated well pump was removed and the well was developed using a submersible pump in accordance with methodology outlined in the SAP (IT, 2002; IT, 2000a). The well development log is included in Appendix B. The sample was collected using a submersible pump following procedures presented in the SAP. Water quality parameters were recorded prior to sample collection, as summarized in Table 1.

2.2 Surveying of Well Locations

The well locations were surveyed using global positioning system survey techniques and conventional civil survey techniques described in the SAP. Horizontal coordinates were referenced to the U.S. State Plane Coordinate System, Alabama East Zone, North American Datum of 1983. Horizontal coordinates are included in Appendix C.

2.3 Analytical Program

Groundwater samples collected during this investigation were analyzed for various chemical parameters based on the site-specific chemicals potentially used at Pelham Range. With the exception of the SOTS well resample, the samples were analyzed for the following parameters using EPA SW-846 methods, including Update III methods where applicable:

- Target compound list volatile organic compounds (VOC) EPA Method 8260B
- Target compound list semivolatile organic compounds (SVOC) EPA Method 8270C

Table 1

Groundwater Field Parameters Water Supply Wells at Pelham Range Fort McClellan, Calhoun County, Alabama

Well Location	Sample Date	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Turbidity (NTU)	pH (SU)
WSW-Rideout	17-Oct-00	0.150	7.60	18.5	63	7.11
WSW-RNG-57	17-Oct-00	0.160	9.70	17.0	0	7.54
WSW-SOTS-ADM	17-Oct-00	0.175	4.57	20.0	0	7.66
WSW-FMR-SOTS	18-Oct-00	0.231	9.92	18.8	344	6.80
VVOVV-1 IVIN-3013	13-Feb-03	0.321	4.23	18.1	5.1	6.79

[°]C - Degrees Celsius.

mg/L - Milligrams per liter.

mS/cm - Millisiemens per centimeter.

NTU - Nephelometric turbidity units.

SU - Standard units.

WSW-Rideout - Water supply well at Rideout Hall, Building 8801.

WSW-RNG-57 - Water supply well at Range 57.

WSW-SOTS-ADM - Water supply well at SOTS Administration Building, Building 8203.

WSW-FMR-SOTS - Water supply well at former SOTS facility (actual test site).

- Target analyte list (TAL) metals EPA Methods 6010B/7470A
- Nitroaromatic and nitramine explosives EPA Method 8330.

The resample from the SOTS water supply well was analyzed for TAL metals only.

Analytical data were reported and evaluated in accordance with Corps of Engineers South Atlantic Savannah Level B criteria (USACE, 1994) and the stipulated requirements for the generation of definitive data presented in the SAP. Chemical data were reported via hard-copy data packages by the laboratory using Contract Laboratory Program-like forms. These packages were validated in accordance with EPA National Functional Guidelines by Level III criteria. A summary of validated data is included in Appendix D.

2.4 Sample Preservation, Packaging, and Shipping

Sample preservation, packaging, and shipping followed requirements specified in the SAP. Sample containers, sample volumes, preservatives, and holding times for the analyses performed in this investigation are listed in the SAP. Sample documentation and chain-of-custody records were recorded as specified in the SAP.

Completed analysis request and chain-of-custody records (Appendix A) were included with each shipment of samples to EMAX Laboratories, Inc. in Torrance, California.

3.0 Summary of Analytical Results_____

The results of chemical analysis of the groundwater samples collected from the water supply wells at Pelham Range indicate that metals, VOCs, and SVOCs were detected in the samples. Explosive compounds were not detected in any of the samples. To evaluate whether the detected constituents present an unacceptable risk to human health, the analytical results were compared to the residential human health site-specific screening levels (SSSL) for FTMC. The SSSLs were developed by Shaw for human health risk evaluations as part of the ongoing site investigations being performed under the Base Realignment and Closure Environmental Restoration Program at FTMC (IT, 2000b).

Metals results exceeding SSSLs were subsequently compared to background screening values to determine if the metals concentrations were within natural background concentrations (Science Applications International Corporation [SAIC], 1998). Table 2 summarizes the results of the comparison of detected constituents to the SSSLs and background screening values. Complete analytical results are presented in Appendix D.

Table 2

Groundwater Analytical Results Water Supply Wells at Pelham Range Fort McClellan, Calhoun County, Alabama

Well L	ocation			F	Rideou	ut Hall Range 57			Administration Building 8203 S			Security	Operat	ions Te	st Site	Security Operations Test Site			est Site				
Sample Lo	cation C	ode		W:	SW-RII	DEOUT		V	/SW-R	NG-57		ws	w-so	TS-ADN	Λ	ws	W-FM	R-SOTS	3	ws	W-FM	R-SOT	s
Sample	Numbe	r			XQ30	003		XQ3001			XQ3002			XQ3005			XQ3024						
Samp	e Date			17-Oct-00 1			17-00	t-00			17-00	t-00			18-Oc	t-00		13-Feb-03					
Parameter	Units	BKG ^a	SSSL⁵	Result	Qual	>BKG	>SSSL	Result	Qual	>BKG	>SSSL	Result	Qual	>BKG	>SSSL	Result	Qual	>BKG	>SSSL	Result	Qual	>BKG	>SSSL
METALS											•												
Aluminum	mg/L	2.34E+00	1.56E+00	ND				ND				ND				8.87E-02	J			ND			
Arsenic	mg/L	1.78E-02	4.46E-05	ND				ND				ND				4.53E-01		YES	YES	1.18E-02			YES
Barium	mg/L	1.27E-01	1.10E-01	4.51E-01		YES	YES	6.03E-03	J			5.02E-03	7			5.65E-02				3.13E-02			
Calcium	mg/L	5.65E+01	NA	3.21E+01				3.17E+01				3.27E+01				3.62E+01				4.21E+01			
Copper	mg/L	2.55E-02	6.26E-02	8.00E-03	٦			ND				7.34E-03	7			1.57E-01		YES	YES	ND			
iron	mg/L	7.04E+00	4.69E-01	5.70E+00			YES	3.50E-02	J			1.72E-02	7	,		2.55E+01		YES	YE\$	5.82E-01	7		YES
Lead	mg/L	8.00E-03	1.50E-02	ND				9.67E-03	В	YES		6.91E-03	В			8.56E-03	В	YES		ND			
Magnesium	mg/L	2.13E+01	NA	9.96E+00				1.93E+01				2.00E+01				2.35E+01		YES		2.00E+01			
Manganese	mg/L	5.81E-01	7.35E-02	4.28E-01			YES	ND	L			ND				4.14E-01			YES	7.33E-02	J		
Nickel	mg/L	NA	3.13E-02	1.06E-02	J			ND				ND				ND				ND			
Potassium	mg/L	7.20E+00	NA	ND				ND				ND				ND				7.89E-01	В		
Sodium	mg/L	1.48E+01	NA	7.53E+00				1.12E+00				8.93E-01	J			1.80E+00				8.81E-01	J		
Thallium	mg/L	1.46E-03	1.02E-04	ND				ND				6.14E-03	J	YES	YES	ND				ND			
Zinc	mg/L	2.20E-01	4.69E-01	7.31E-01		YES	YES	1.07E-02	В			4.33E-01		YES		7.81E-01		YES	YES	4.09E-02	J		
VOLATILE ORGANIC COMPO	UNDS	,										·											
Chloroform	mg/L	NA	1.15E-03	ND				ND				ND	l			1.30E-03	J		YES	NR			
SEMIVOLATILE ORGANIC CO	OMPOU	NDS																					
Bis(2-Ethylhexyl)phthalate	mg/L	NA	4.31E-03	ND				4.80E-03	J		YES	ND				ND				NR			

Analyses performed using U.S. Environmental Protection Agency (EPA) SW-846 analytical methods.

- B Analyte detected in laboratory or field blank at concentration greater than the reporting limit.
- J Compound was positively identified; reported value is an estimated concentration.

mg/L - Milligrams per liter.

NA - Not available.

ND - Not detected.

NR - Not requested.

Qual - Data validation qualifier.

^a BKG - Background. Concentration listed is two times (2x) the arithmetic mean of background metals concentration given in SAIC, 1998, *Final Background Metals Survey Report, Fort McClellan, Alabama*, July.

^b Residential human health site-specific screening level (SSSL) as given in IT, 2000, Final Human Health and

Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama , July.

3.1 Security Operations Test Site

Metals. Eleven metals were detected in the initial groundwater sample collected from the SOTS water supply well. The concentrations of four metals (arsenic, copper, iron, and zinc) exceeded their respective SSSLs and background concentrations.

It should be noted that the original groundwater sample collected from the SOTS water supply well had high turbidity (344 nephelometric turbidity units [NTU]) at the time of sample collection. Therefore, the well was resampled (for metals analysis only) on February 13, 2003, following thorough well development and the use of a reduced flow sample method that resulted in much lower sample turbidity (5.1 NTU, see Table 1). The resample results indicate that only two metals (arsenic and iron) exceeded SSSLs. The arsenic and iron results, however, were below their respective background values.

VOCs. Chloroform was the only VOC detected in the sample from the SOTS water supply well. The analytical result was flagged with a "J" data qualifier indicating that the compound was positively identified but the concentration was estimated. The chloroform concentration (0.0013 milligrams per liter [mg/L]) marginally exceeded its SSSL (0.00115 mg/L).

SVOCs. SVOCs were not detected in the groundwater sample from the SOTS water supply well.

Explosives. Explosive compounds were not detected in the groundwater sample collected from the SOTS water supply well.

3.2 Rideout Hall Building 8801

Metals. Nine metals were detected in the groundwater sample collected from the Rideout Hall Building 8801 water supply well. The concentrations of two metals (barium and zinc) exceeded their respective SSSLs and background concentrations. This sample was also moderately turbid (63 NTU) at the time of sample collection, which likely caused the elevated metals results.

VOCs. VOCs were not detected in the groundwater sample collected from the Rideout Hall Building 8801 water supply well.

SVOCs. SVOCs were not detected in the groundwater sample collected from the Rideout Hall Building 8801 water supply well.

Explosives. Explosive compounds were not detected in the groundwater sample collected from the Rideout Hall Building 8801 water supply well.

3.3 Range 57

Metals. Seven metals were detected in the groundwater sample collected from the Range 57 water supply well. The metals concentrations in the sample were below their respective SSSLs.

VOCs. VOCs were not detected in the groundwater sample collected from the Range 57 water supply well.

SVOCs. Bis(2-ethylhexyl)phthalate was the only SVOC detected in the groundwater sample collected from the Range 57 water supply well. The analytical result was flagged with a "J" data qualifier, indicating that the compound was positively identified but the concentration was estimated. Bis(2-ethylhexyl)phthalate is a common sample contaminant. The bis(2-ethylhexyl)phthalate concentration (0.0048 mg/L) marginally exceeded its SSSL (0.0043 mg/L).

Explosives. Explosive compounds were not detected in the groundwater sample collected from the Range 57 water supply well.

3.4 SOTS Administration Building 8203

Metals. Nine metals were detected in the groundwater sample collected from the SOTS Administration Building 8203 water supply well. Only one metal (thallium) was detected at a concentration exceeding its SSSL. The thallium result (0.0061 mg/L) also exceeded its background value (0.0015 mg/L); however, the analytical result was flagged with a "J" data qualifier, indicating that the concentration was estimated.

VOCs. VOCs were not detected in the groundwater sample collected from the SOTS Administration Building 8203 water supply well.

SVOCs. SVOCs were not detected in the groundwater sample collected from the SOTS Administration Building 8203 water supply well.

Explosives. Explosive compounds were not detected in the groundwater sample collected from the SOTS Administration Building 8203 water supply well.

4.0 Summary and Conclusions

The concentrations of six metals (arsenic, barium, copper, iron, thallium, and zinc) exceeded their respective SSSLs and background concentrations in the Pelham Range water supply well groundwater samples. Thallium was present in the sample from the SOTS Administration Building 8203 well. The remainder of the metals were present in two samples (SOTS and Rideout Hall) that were turbid at the time of sample collection. Resampling of the SOTS well confirmed that the initial elevated metals results were caused by high sample turbidity.

Chloroform was detected in the sample from the SOTS water supply well at a concentration (0.0013 mg/L) marginally exceeding its SSSL (0.00115 mg/L). Although a drinking water standard for chloroform (trichloromethane) is not available, the chloroform concentration was well below the EPA drinking water standard of 0.08 mg/L for total trihalomethanes. VOCs were not detected in any of the other water supply wells sampled.

Bis(2-ethylhexyl)phthalate was detected in the sample from the Range 57 water supply well at a concentration (0.0048 mg/L) marginally exceeding its SSSL (0.0043 mg/L). However, bis(2-ethylhexyl)phthalate is a common contaminant in water samples. The compound may have also originated from the garden hose used in sampling. Consequently, bis(2-ethylhexyl)phthalate is not considered to be a site-related contaminant. SVOCs were not detected in any of the other water supply wells sampled.

Based on the groundwater sample results from the water supply wells at Pelham Range, past operations at the range have not adversely impacted these wells. Therefore, Shaw recommends no further action be taken pertaining to the water supply wells at Pelham Range.

5.0 References _____

IT Corporation (IT), 2002, *Draft Installation-Wide Sampling and Analysis Plan, Fort McClellan, Calhoun County, Alabama*, Revision 3, February.

IT Corporation (IT), 2000a, Final Installation-Wide Sampling and Analysis Plan, Fort McClellan, Calhoun County, Alabama, March.

IT Corporation (IT), 2000b, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July.

Science Applications International Corporation (SAIC), 1998, *Final Background Metals Survey Report, Fort McClellan, Alabama*, July.

U.S. Army Corps of Engineers (USACE), 1994, *Requirements for the Preparation of Sampling and Analysis Plans*, Engineer Manual EM 200-1-3, September.

APPENDIX A

SAMPLE COLLECTION LOGS AND ANALYSIS REQUEST/CHAIN-OF-CUSTODY RECORDS

SAMPLE COLLECTION LOGS

Sample Collection Log

	Proj	ect.			t McClella	an, SAD T					
	ı roj	cci.	Manager	r: Jeanne Ya	coub				\c. 1 \c.		
				10.44		RF			15W-RN		/ _ / -
			WSU	<u>1 - 12116</u>	<u>-5/</u>		Collectio		10/18/	<u>9/3 /9/</u>	17/00
	Location						Collectio		// 03	<u> </u>	·
S	Sample N		· .		6 /			Depth:	NA		
_	_	Name:		-(Q30))/	 .	Ena	Depth:	MA		
Sa	mpling N	Aethod:	Dec	1, catpr	<u>0011 po</u>	/2/2					
							Sample	e Team:	1.150	9m	
Š	_								- 17	icp	
Check	<u></u>	1 Cm4	. 04.	Size	Uni	40 T	уре Т	CLP (Y/N)	1. /	,,,,	
	Analytic		e Qty					CLI (IIII)	73		
	semiyo				i.		an area				
	Min sales					CONTRACTOR OF THE STATE OF THE STATE OF					•
						The second secon	GI KE				
	(e.e.)	enie.					Class		*		
			1		ings it	The second secon	AT LIKE				
	(d)PHai	NAME OF TAXABLE PARTY.	2 a l			Avrilo	(Haise				
	Receiv			1	F 1	1,000	at late				
'	Refere	esjilliti	1.	1		i de la composición della comp	TORTO				
	ni.					to the rest with a second to the an artist of the	f last				
	i pini		18 F (2)		L Park		Chess		7		
	(U) Gai	1/200						N.Lroekp	05312		
	Oliere										
	Others						_				
	Others										
	Ollien		100								
	Date	Time (24 hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turb (ntu)	DO (ppm)	Temp	Volume
	10/17/00	102	0	NA	NA	7.30	0.166	0	6.96	18,2	30591
		102	17	NA	NA	7,48	0.163	0		120	44991
		103		NA	NA	7,49	01165			1 :	,
		,						0	7,98	17.3	49915
		103	4	NA	NA	7,50	0.164	0	8,82	17,2	60915
		103	7	NA	NA	7,54	0.160	0	7,72	169	1099/5
		104			NA	l .	0.162	.0			8799/5
			_	NA	NA	7.58	0158	0	7.26	17.1	107
		104	2	NA		7.54	01159	0		17.1	122
		105		NA	NA	7,56	0.159	0	9,73	12,1	137
Logs	ged BY	/Date:				Rev	iewed B	Y/Date:			
- 6	_	110	7	NA	NA	7.54		0	9,70	170	154gg/s
		,, ,	•	•		•		-	,. , -	-	1-1990

	Project:			t McClena			•						
Location Code: Sample Number: Sample Name: Sampling Method:		: [U.SW	: Jeanne Ya 1-SO/S- XO.3 O Jugator	- ADM 002		Collectio Collectio Start End	n Date:	1210' NA NA					
Check		4 04-	Size	. Uni	4_ TP		CLP (Y/N)	7. 10	ice				
	Analytical Sui Volatiles Semivolatiles Metals POBE C Pesticules C Herbicules OP Pesticiles Réactive Cyal Reactive Sulti DHS E appoint Others C thers Cothers Cothers Cothers				Amb	AGGI GRASS CRASS CRASS GRASS CRASS CRASS CRASS CRASS CRASS		,					
	Date Time	24 hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turb (ntu)	DO (ppm)	Temp	Volume			

Date	Time 24 hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turo (ntu)	DO (ppm)	Temp	Volume
19/17/0	0/142	NA	NA	7,60	0176	0	5.94	20°C	10g a/
	1147	NA	NA	7,63	0-176	0	5-87	21,200	2099
	1150	NA	NA	7.63	0,176	0	7.23	19.7	3099/
		NA	WA	7.64	0.174	0	6.75	26,4	45
	1201		NA	7,67	0,176	0	6-71	20.0	,
	1207	NA	NA	7.66	0.175	0	4157	20.0	
		:					`		<i>3</i>

Logged BY/Date: Reviewed BY/Date: Reviewed BY/Date:

Project:

796887 Fort McClellan

Manager: Jeanne Yacoub

WSW-021403-EMAN

RFA / COC Number: No COC-

FMR-SOTS

Location Code: WSW-SOTS-ADM 9W 5/15/03

Sample Number: XQ3024 FMR-SOTS

Sample Name: WSW-SOTS-ADM_GW-XQ3024-REG

Sampling Method: SP

Sample Type: **GW**

Sample Purpose: REG

Collection Date: 13-FEB-03

Collection Time: 16:35

Start Depth: 0

End Depth: 0

Sample Matrix: WATER

Sample Team: OA

Containers

Analytical Suite Flt Frtn Qty Size Units Type

METALS-W

N C

HDPE

ERPIMS Values:

Lot Control#:

Comments:

SOTS Supply Well

SAMPLE PH TESTED to less than 2.

Sketch Location:

DEPTH to WATER COTW) - 68.52' BTOC

TOTAL DEPTH (TD) - -- 177.50' BTOC

WATER Column (WC) -- 108.88' B705

(1) Purge Volume (PV) - 168.63 GALLONS

(3) Purge Volumos (pV) - 484.2 g ALLOWS

TD'-DTW'= WC'X1.49 = 0) PV (6"well)

Sacode:

Logged BY / Date:

Reviewed BY / Date: //

Project:

796886

Fort McClellan

Manager: Jeanne Yacoub

Location Code: OLF-G40 WSW SOTS ADM 5/15/03

Sample Number: PE3165 XQ3024

<u>PUR</u> (GE REC	ORD:								
Initial	Time(24hr)	DepthtoWater	Eh	-	Conductivity	Turbidity	DissOxygen Mo/L (ppm)-	Temperature	Purge Volume	
0.110	1310	(ft) 68.52	(mV)	(SU)	(mS/cm)	(NTU)	· · · · · · · · · · · · · · · · · · ·	 	Ø (gal)	
OKA	1230	68.96	-92.4	6.38	0.189	130	0.30	18.62	30 € 1.58	, I
	1250	69.07	-106.9	6.45		38	0.11	18.60	68 6 1.0 8) þm
	1320	69.10	- 93.8	6.63	0.368	20	0.05	18.52	125	
	1350	69.11	- 38.1	6.65	0.372	28	0.28	18.41	182	
	1.10		1	}						
	1420	69.12	82.4	6.70	0.361	24	1.90	18.24	239	
	1450	69.12	26.7	6.77	0.355	\5.5	2.33	18.17	296	
	1520	100				11.2		,	2 ==2	
	1240	69.13	25.1	6.78	0.341	11.3	3.12	18.02	353	
	1550	69.13	24.6	6.76	0.335	8.7	3.56	18.17	410	
				-						
	1620	69.13	25.0	6.77	0.325	5.9	4.29	18.20	467	
	1625	69.14	27.7	6.75	0.322	5.1	4.28	18.19	476.5	
\				ļ .			1.00			
-	1630	69.14	23.4	6.79	0.321	5.1	4.23	18.13	486	
Sample:										

Reduced Punge rare to . Sigpm. Connected sample @ 1635 hrs

Logged BY / Date:

Reviewed BY / Date:

	Proje	ect· _		Fort	McClella	ın, SAD T	ERC				
Si	Proje Location ample Na Sample npling M	Site: Code: _ umber: 3 Name: _	SOTS INSU	Jeanne Ya			A/COC N Collectio Collectio Start	n Date:	IS W-SO, 10/18/00 154/ NA NA)	=MAX
Check	upung 14		TAC	TICH	L SIT	6	Sample	e Team:	J. B.O.	(v	
		al Suit	Qty	Size	and the second s		ype T	CLP (Y/N)	1		
	Volatile	The second secon		40	911						
	Semiro	anler a	<u>i</u>			and a second state of the second seco					
	Meigls					11011					
						The state of the s	A FARRES				
	(et Perili						CONTRACTOR OF THE PARTY OF THE		,		
		Colonia de la co				A	achasi Achasi				
	O): Pesi	and the state of t				SPECE STANSON THE PROPERTY.	6123				
	100000000000000000000000000000000000000	stevenie esimb	1			isa Atinja					
						the fact that the same of the same of					
								NIfrago	matts		
	Office						7	7. 3 7	4,.6		
	Other		215								
	Offers										
	Onas										
	Date	Time 24	hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turb (ntu)	DO (ppm)	Temp	Volume

Date	Time 24 hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turb (ntu)	DO (ppm)	Temp	Volume	
10/18	1450,55098	NA	NA	6.55	0,228	l .	6.34	19.8	10 ga	1
	1458	WA	NA	6.64	0.228	59	5.93	19.4	18	
	1506	6 NA	NA	امسدا	0.227	24/	7.47	19.3	368	ŀ
	1512	NA	NA		0,224	206	7,24	19.0	57	
	1518	NA	NA	6-9-2981	-6.76 0.2	4 206	7,24	19.0	78	
	1524	NA	NA	6-78	0.23/	4/6	6.55	19.0	99	
	1530	NA	NA	, ,	0,232 0,233	466	· ·	100	120	
	17-112	111	WA	FO 7	7 227	200	5.6/	18,8	///-	

A Increased value ou 14 fee to 3,5 gals/m/a

Find roading 1435 7.110H. O.150 mond, 63 NITS, 7.6000, 18.50c.

	Proje	ct:	Manage	For er: Jeanne Ys		an, SAD 1	TERC				
			.,		•	R#	FA/COC N	Vumber:			
		Site:		•			Collectio	on Date:	10/17/0	0	
	Location (144	CW-R	TOFOU		Collectio		14/30		
	Sample Nur			0300				t Depth:	NA		
	Sample N			<u>U.SUU</u>	<u> </u>			d Depth:	NA		
	ampling Me		$\overline{\Omega}$	esisnates	7					 	•
D)	umpring Me	inua.	108	essena vec	7 203	2			T 12		
							Sampl	e Team:	J. Beo.		·
꿁									T. 12.		
Check			.					CI D CVDD	1,16.0	<u> </u>	
	Analytica	l Suit	Qt	y Size	· Uni	ts I	ype T	CLP (Y/N)			
		11.									
<u>L</u>		e e e e e e									
	理學的										
	12925								*		
Г											
						3-1-3					
		la (ez			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
	Totales s					1 1 1 1 2 1					
		.	114			÷	1. 美華				
 	THE				77. 59.40	auge,					
						1	1		, 		
	Date 1	lime 2	+hn	DTW(ft)	Eh(mV)	pH (SU)	Cond	Turb (ntu)	OO (ppm)	Temp	Volume
	nInla	1320	0	VA	NA	7.28	0.158	34	3.04/	19.5	155815
	19/1/-	1320 1320 1320	_	NA	NA	7.26	0.160	222	12.72	18.0	3000
		13	<u>ာ</u>	NA	MA	7,26	0.146	99	I -	17.4	3090/5
		1320	,	11/2	1/4	1 _		1	6.03	117	25915
		133		III	111	7.09	0.146	116	7,02	17.6	4396
		133	24	NA	NA	7.06	0-149	65	8.38	174	2/000
		121	10	NA	NA		0.150	12	7.30	17/	70/10
		134	O	:	2/1			02	ł	126	50 9918
		134	15	NA	10 14	7,23	0-166	66	5, 25	17,5	689715
		135	_	well h	\$ 90-	c dry					3 .
Log	ged BY/E	Date:			,	Rev	iewed B	Y/Date:			
~ ·	A SWIF	ich	40	2 2 2	DVC		as fl	rned or	n to n	·she	the pomp
**	אושו ה	-UN 11	Co.	a L	me p	pe w		1/2.	e 2 1 1 1	1 0. 1	John Kassen
1	n the o	well	tur	n on a	gatin.	rowsty	. 20,	pious i	2 migh	04 07	the pump

ANALYSIS REQUEST/CHAIN-OF-CUSTODY RECORDS

SDa #00 J139

Date

17 OCT 2000

17 OCT 2000

17 OCT 2000

17 OCT 2000

Time

Container

16:00 40 ml VOA VIAL

12:10 |40 ml VOA VIAL

12:10 |1 L Amb. Glass

12:10 |1 L Amb. Glass

12:10 11 L HDPE

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Reference Document No: WSW-SOTS-EMAX

Page 1 of 1

Project Number: 773019

Samples Shipment Date: 17 OCT 2000

Bill To: Duane Nielsen

Knoxville

Project Name: Fort McClellan

312 Directors Drive

TN 37923

Sample Coordinator: Oliver Allen

Lab Contact: Elizabeth McIntyre

Lab Destination: EMAX Laboratories, Inc.

Report To: Duane Nielsen

Turnaround Time: NOIRMAL

Sample Name

FIELDQC-BW-101700-TB-TB

WSW-SOTS-ADM-GW-XQ3002-REG

WSW-SOTS-ADM-GW-XQ3002-REG

WSW-SOTS-ADM-GW-XQ3002-REG

WSW-SOTS-ADM-GW-XQ3002-REG

Project Contact: Randy McBride

312 Directors Drive

Carrier/Waybill No.: Fed Ex/

Knoxville

Program

TAL Metals by 6010B/7470A - Water

Volatiles by 8260B

Volatiles by 8260B

Semivolatiles by 8270C

Nitroaromatics by 8330

TN 37923

Receipt

Fil CID

N

Special Instructions: NONE		7778 7367 77		
Possible Hazard Indentification: Non-hazard Flammable Skin Irritant	Poison B Unknown 互	Sample Disposal	: Disposal by Lab Archive	(mos.)
1. Relinquished By (Signature/Affiliation) TT Corp	Date: /0//7/00 Time: /700	1. Received By (Signature/Affiliation)	Slow	Date: (0-18-0)
2. Relinquished By (Signature/Affiliation)	Date: Time:	2. Received By (Signature/Affiliation)		Date: Time:
3. Relinquished By (Signature/Affiliation)	Date: Time:	3. Received By (Signature/Affiliation)		Date: Time:
Comments: NONE		Cool	1-1-7=2.7 Jury 7=2.7 Jury 7=2.5	
Sample Sar	nple Sample	Ctr	Requested Testing	Condition On

Qty

3 |HC|<pH 2

3 HCI<pH 2

1 HNO3<pH 2

Preservative

2 None except cool to 4 C

2 None except cool to 4 C

Sample

No

(101700-TB

XQ3002

SDGHODJ 139

C1/WA4]

OUJ139

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Reference Document No: WSW-RNG-57

Page 1 of 1

Project Number: 773019

Samples Shipment Date: 17 OCT 2000

Carrier/Waybill No.: Fed Ex/

Bill To: Duane Nielsen

Project Name: Fort McClellan

Lab Destination: EMAX Laboratories, Inc.

312 Directors Drive

Knoxville

TN 37923

Sample Coordinator: Oliver Allen

Turnaround Time:

Lab Contact: Elizabeth McIntyre

Report To: Duane Nielsen

312 Directors Drive

Project Contact: Randy McBride

Knoxville

TN 37923

NONE Special Instructions: Sample Disposal: Possible Hazard Indentification: Disposal by Lab (mos.) Return to Client Poison B Unknown 7 Non-hazard Flammable ... Skin Irritant Date: 10-18-00 Date: 10/17/06 1. Received By 1. Relinguished By (Signature/Affiliation) Time: 10: ~~ (Signature/Affiliation) Time: 1700 Date: 2. Received By Date: 2. Relinquished By (Signature/Affiliation) Time: (Signature/Affiliation) Time: Date: 3. Received By Date: 3. Relinguished By Time: (Signature/Affiliation) (Signature/Affiliation) Time: Comments: NONE

	Sample No	Sample Name	Sample Date	Sample Time	Container	Ctr Qty	Preservative	Requested Testing Program	Fil CID	Condition On Receipt
C X	23001	WSW-RNG-57-GW-XQ3001-REG	17 OCT 2000	11:05	40 ml VOA VIAL	3	HCI <ph 2<="" td=""><td>Volatiles by 8260B</td><td>N</td><td></td></ph>	Volatiles by 8260B	N	
淵	23001	WSW-RNG-57-GW-XQ3001-REG	17 OCT 2000	11:05	1 L Amb. Glass	2	None except cool to 4 C	Semivolatiles by 8270C	N	
Nil		WSW-RNG-57-GW-XQ3001-REG	17 OCT 2000	11:05	1 L HDPE	11	NO3 <ph 2<="" td=""><td>TAL Metals by 6010B/7470A - Water</td><td>N</td><td></td></ph>	TAL Metals by 6010B/7470A - Water	N	
<i>(</i>)		WSW-RNG-57-GW-XQ3001-REG	17 OCT 2000	11:05	1 L Amb. Glass	2	None except cool to 4 C	Nitroaromatics by 8330	N	

3

c1/WA4 00J139 Reference Document No: WSW-RIDEOUT-EMAX

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Page 1 of 1

Project Number: 773019

Samples Shipment Date: 17 OCT 2000

Bill To: Duane Nielsen

Project Name: Fort McClellan

Lab Destination: EMAX Laboratories, Inc.

312 Directors Drive Knoxville

TN 37923

Sample Coordinator: Oliver Allen

Lab Contact: Elizabeth McIntyre

Report To: Duane Nielsen

Turnaround Time:

IT CORPORATION A Member of The IT Group

Project Contact: Randy McBride

312 Directors Drive

Carrier/Waybill No.: Fed Ex/ 790382

Knoxville

TN 37923

Possible Hazard Indentification:		Sample Disposal:	Archive (mos.)
Non-hazard Flammable Skin Irritant	Poison B Unknown	Return to Client Disposal by Lab	
1. Relinquished By	Date: 10/17/00	1. Received By	Date: 10-18-00
(Signature/Affiliation)	Time: /700	(Signature/Affiliation)	Time: 10: was
	Date:	2. Received By	Date:
2. Relinquished By (Signature/Affiliation)	Time:	(Signature/Affiliation)	Time:
	Date:	3. Received By	Date:
3. Relinquished By (Signature/Affiliation)	Time:	(Signature/Affiliation)	Time:
Comments: NONE			
	•		

	Sample No	Sample Name	Sample Date	Sample Time	Container	Ctr Qty	Preservative	Requested Testing Program	Fil CI	Condition On D Receipt
0	O3003	WSW-RIDEOUT-GW-XQ3003-REG	17 OCT 2000	14:30	40 ml VOA VIAL	1 -	[· · · · · · · · · · · · · · · · · · ·	Volatiles by 8260B	N	
	Q3003	I ;WSW-RIDEOUT-GW-XQ3003-REG	17 OCT 2000	14:30	1 L Amb. Glass	. 2		Semivolatiles by 8270C	N	
١L	-	WSW-RIDEOUT-GW-XQ3003-REG	17 OCT 2000	14:30	1 L HDPE	1	HNO3 <ph 2<="" td=""><td>TAL Metals by 6010B/7470A - Water</td><td>N</td><td></td></ph>	TAL Metals by 6010B/7470A - Water	N	
∡III			17 OCT 2000		1 L Amb. Glass	2	None except cool to 4 C	Nitroaromatics by 8330	N	
51	Q3003	WVSVV-RIDEOU1-GVV-AQ3003-REG	17 001 2000	17.50		工		<u> </u>		

SDG #00 J 139 ANALYSIS REQUEST AND

CHAIN OF CUSTODY RECORD

FYVB4 OOTIS7
Reference Document No: WSW-SOTS2-EMAX

Page 1 of 1

Project Number: 773019

Samples Shipment Date: 18 OCT 2000

Bill To: Duane Nielsen

Project Name: Fort McClellan

312 Directors Drive

TN 37923

Sample Coordinator: Oliver Allen

Lab Contact: Elizabeth McIntyre

Lab Destination: EMAX Laboratories, Inc.

Report To: Duane Nielsen

Turnaround Time: NORMAL

Project Contact: Randy McBride

312 Directors Drive

Knoxville

Carrier/Waybill No.: Fed Ex/ 79038 4/88293

Knoxville

TN 37923

Special Instructions: NONE				
Possible Hazard Indentification: Non-hazard	Poison B Unknown	Sample Disposal:	Disposal by Lab Archive	(mos.)
1. Relinquished By (Signature/Affiliation)	Date: /0//8/00 Time: /700	1. Received By (Signature/Affiliation)	SSCM	Date: 10-19-20 Time: 12:00 アル
2. Relinquished By (Signature/Affiliation)	Date: Time:	2. Received By (Signature/Affiliation)		Date: Time:
3. Relinquished By (Signature/Affiliation)	Date: Time:	3. Received By (Signature/Affiliation)	·	Date: Time:
Comments: NONE				
			7=3.8	

Condition On **Requested Testing** Ctr Sample Sample Sample Receipt Program Fil CID Qty Preservative Time Date Container Sample Name No Volatiles by 8260B 16:30 40 ml VOA VIAL 3 HCI<pH 2 FIELDOC-BW-101800-TB-TB 18 OCT 2000 101800-TB Volatiles by 8260B HCI<pH 2 15:45 40 ml VOA VIAL WSW-FMR-SOTS-GW-XQ3005-REG 18 OCT 2000 Semivolatiles by 8270C 2 None except cool to 4 C 15:45 |1 L Amb. Glass WSW-FMR-SQTS-GW-XQ3005-REG 18 OCT 2000 XQ3005 TAL Metals by 6010B/7470A - Water HNO3<pH 2 TN 15:45 |1 L HDPE XQ3005 WSW-FMR-SOTS-GW-XQ3005-REG 18 OCT 2000 N Nitroaromatics by 8330 2 None except cool to 4 C 15:45 |1 L Amb. Glass WSW-FMR-SOTS-GW-XQ3005-REG 18 OCT 2000

Is

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

038118

Reference Document No: SOTS-021403-EMAX

Page 1 of 1

D!4	Missingle	770040
Project	Number:	113019

Samples Shipment Date: 14 FEB 2003

Bill To: Duane Nielsen

Project Name: For McGletan, SAD TERC

Lab Destination: EMAX Laboratories, Inc.

312 Directors Drive Knoxville

Sample Coordinator: Oliver Allen

Lab Contact: Elizabeth McIntyre

TN 37923

Turnaround Time: Nornal

Project Contact: Tim Roth

Report To:

Carrier/Waybill No.: UPS/

Anniston

ΑL

Possible Hazard Indentification: Non-hazard Flammable Skin Irritant	Radiological Poison B Unknown	Sample Disposal: Return to Client Disposal by Lab Archive	(mos.)
1. Relinquished By (Signature/Affiliation)	Date: 2//4/ • 3 Time: 1600	1. Received By (Signature/Affiliation)	Date: 2-15-03 Time: 0945
2. Relinquished By (Signature/Affiliation)	Date: Time:	2. Received By (Signature/Affiliation)	Date: Time:
Relinquished By (Signature/Affiliation)	Date: Time:	3. Received By (Signature/Affiliation)	Date: Time:
Comments: None		T= 2.8°C	. :

	ample No	Sample Name	Sample Date	Sample Ctr Requested Testing Time Container Qty Preservative Program		Fil CID	Condition On Receipt			
XQ30	024	WSW-SOTS-ADM-GW-XQ3024-REG	13 FEB 2003	16:35 1	L HDPE	1	HNO3 <ph 2<="" td=""><td>TAL Metals by 6010B/7470A - Water</td><td>N</td><td></td></ph>	TAL Metals by 6010B/7470A - Water	N	

Note: Sample name prefix incorrectly assigned.
The correct designation is WSW-FMR-SOTS, which is the well at the actual SOTS facility.

The correct designation is WSW-FMR-SOTS, which is the well at the actual SOTS facility.

The correct designation is the well at the actual SOTS facility.

APPENDIX B

WELL DEVELOPMENT LOG FOR SOTS WELL RESAMPLE

Groundwater Well Development Log

Fort McClellan , Alabama

Project Number:	
Form Completed by:	€. Allc2

Well Developed by (person/firm): O.Alka /L.Flippin (SHAW)

Parcel No.: Well No.: RNG-102

Well No.: Date started: 3075 Supply Well

Monitoring Well Information

Development Method: Development Equipment: Punge Grundlog, Diw Meren, YSI-556 DRT-15CE

Beginning Measurments

Depth to Water (ft): Total depth of Well (ft): 71.30' BTOC

Casing Diameter:

6"

Time 24hr 0845	Purge Volume (gal)	Water Level (ft) (TOC) 71.30	pH (std units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	Temperature (°C)	Clarity (color)	•	Comments ate if different from start date) ge Rate, Pump Position, Misc.)
08.50	5	71.71	6.57	D.360	271.0	0.30	17.60	Rustylorgal	1.0	Pump @ 170'BTOC
09:05	20	71.68	b.57	0.363	193.0	0.77	17.73	15	1.0	1)

1.0 11 11 231.D 17.68 5D b.57 0.363 09:35 71.79 17.69 1.0 11 14 **b. b**1 0.363 151.0 1.15 71.76 80 10:05 1.2 11 11 .54 17.75 6.60 0.357 125.0 10:35 JI. 76 116 Pump@ 100'BTOC 1.2 D.40 17.87 11 6.49 0.355 541.0 :05 152 .3 0.37 17.86 0.357 395.0 71.85 6.49 Minimum H20 to remove

 $\frac{\text{TD} - \text{DTW} = \text{WC} \times \frac{24}{4} \text{ well} = \text{One PV} \times 5 = \text{Min PV} + \text{H20 to install well} = \text{Minimum H20 to rem}}{177.5' - 71.3' = 106.2' \times 1.5} = 159.3 \times 5 = 796.5 + 0 = 796.5 gal$

ec's / 11/03

Parcel No.: RNG - 102
Well ID: SOTS Supply Well
Date: 1-29-03

Time 24hr	Purge Volume (gal)	Water Level (ft) (TOC)	pH (std units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	Temperature (°C)	Clarity (color)	(Date	Comments if different from start date)
12:05	230.0	71.86	650	0.349	214	0.42	17.78	Cloudy Cloudy	1.3	Pumpe 100' BTOC
12:35	269.D	71.85	6.54	0.342	137	1.69	17.70	Rusty/orky Clearing	1.3	\
13:05	308.D	71.86	6.56	0.332	83.7	2.4)	17.61	clear	1.3	
13:35	347.0	71.84	6.66	0323	51.4	3.23	17.34	14	1.3	<u></u>
14:05	386.0	71.84	b.37	0.246	ЬЬ. Ч	0.34	17.26	11	1.3	Pumper 80' BTOC
14:35	425. D	71.81	6.45	0.306	608	1.25	17.63	11	1.3	(
15:05	464.0	7).91	6.55	0.311	30.2	2.92	17.64	١٠	1.5	
15:35	509.0	71.92	6.67	0.30%	22.9	3.70	17.70	h	1.5	
16:05	554.D	71.92	b.66	0.306	19.7	4.07	17.69	10	1.5	
07:50	<i>55</i> 4.0	START	- Purc	sing	1-30-	03	57W 70.9	86	PID	0.0
07:55	561.5	71.14	6.65	0.285	30.1	1.45	17.42	Clear	1.5	Pumpe 80'BTOC
08:25	606.5	71.22	6.75	0.327	18.9	1.54	17.64	11	1.5) f

 Parcel No.:
 RNG-102

 Well ID:
 S070 Supply well

 Date:
 1-30 - 03

Time 24hr	Purge Volume (gal)	Water Level (ft) (TOC)	pH (std units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved oxygen (mg/L)	Temperature (°C)	Clarity (color)	Comments (Date if different from start date)
08:55	651.5	71.23	6.84	0.317	16.7	2.51	17.60	Clear	1.5
09:25	696.5	71.23	6.88	0.311	11.8	2.92	17.60	Clear	1.5
09:55	741.5	71.24	6.87	0.318	8.80	2.41	17.60	Clear	1.5
10:10	764.0	71.24	6.83	0.316	4.83	2.28	17.68	clear	1.5
10:25	786.5	71.24	6.86	0.315	3.87	2.48	17.68	clear	1.5
10:40	819. D	71.24	9 5 7	0.313	3.21	2.51	17.63	clear	1.5
	o niu	Voc Po	inged L	روباورج آ	rei -	Photo	Sample	TAKE	ر
:			7				•		
:									
:				V.C					
:			OV	1-3	0.03				
:	· . · · · · · · · · · · · · · · · · · ·								

APPENDIX C SURVEY DATA

Appendix C

Survey Data Water Supply Wells at Pelham Range Fort McClellan, Calhoun County, Alabama

Sample Location	Northing	Easting
WSW-FMR-SOTS	1171303.91	617117.81
WSW-RIDEOUT	1176317.42	607888.50
WSW-RNG-57	1170398.09	637569.07
WSW-SOTS-ADM	1180820.89	624986.87
WSW-UTES	1173444.54	635730.55

Horizontal coordinates referenced to the U.S. State Plane Coordinate System, Alabama East Zone, North American Datum of 1983 (NAD83).

WSW-Rideout - Water supply well at Rideout Hall, Building 8801.

WSW-RNG-57 - Water supply well at Range 57.

WSW-SOTS-ADM - Water supply well at SOTS Administration Building, Building 8203.

WSW-FMR-SOTS - Water supply well at former SOTS facility (actual test site).

APPENDIX D SUMMARY OF VALIDATED ANALYTICAL DATA

User Test (Group Method	Location Code: Associated Site: Sample No: Sample Date:	WSW-FM WS XQ30 18-OC	W 005	S	WSW-FM WS XQ30 13-FE	W 024	S	WSW-RII WS XQ30 17-OC	W 003	•	WSW-R WS XQ3 17-OC	SW 001	
<i>Lab</i>	Parameter	Flt_Units	Result	Qual	VOual	Result	Qual	VOual	Result	Oual	VOual	Result	Oual	VQual
METALS	F drameter		105000	guar	<u> </u>	1105000	2	<u> </u>	1105000	2	<u>, 2,0000</u> _			<u>, , , , , , , , , , , , , , , , , , , </u>
	6010B													
2 // .	Aluminum	mg/L	.0887	J	J	.2	U	U	.2	U	U	.2	U	U
	Antimony	mg/L	.1	U	U	.1	U	U	.1	U	U	.1	U	U
	Arsenic	mg/L	.453			.0118			.01	U	U	.01	U	U
	Barium	mg/L	.0565			.0313			.451			.00603	J	J
	Beryllium	· mg/L	.001	U	U	.01	U	U	.001	U	U	.001	U	U
	Cadmium	mg/L	.01	U	U	.01	U	U	.01	U	U	.01	U	U
	Calcium	mg/L	36.2			42.1			32.1			31.7		
	Chromium	mg/L	.01	U	U	.02	U	U	.01	U	U	.01	U	U
	Cobalt	mg/L	.02	U	U	.02	U	U	.02	U	U	.02	U	U
	Copper	mg/L	.157			.02	U	U	.008	J	J	.02	U	U
	Iron	mg/L	25.5			.582	J	J	5.7			.035	J	J
	Lead	mg/L	.00856	J	В	.01	U	U	.01	U	U	.00967	J	В
	Magnesium	mg/L	23.5			20			9.96			19.3		
	Manganese	mg/L	.414			.0733	J	J	.428			.01	U	U
	Nickel	mg/L	.02	U	U	.02	U	U	.0106	J	J	.02	U	U
	Potassium	mg/L	5	U	U	.789	J	В	5	U	U	5	U	U
	Selenium	mg/L	.01	U	U	.01	U	· U	.01	U	U	.01	U	U
	Silver	mg/L	.01	U	U	.02	U	U	.01	U	U	.01	U	U
	Sodium	mg/L	1.8			.881	J	J	7.53			1.12		
	Thallium	mg/L	.01	U	U	.01	U	U	.01	U	U	.01	U	U
	Vanadium	mg/L	.01	U	U	.02	U	U	.01	U	U	.01	U	U
	Zinc	mg/L	.781			.0409	J	J	.731			.0107	J	В
SW	7470A													
	Mercury	mg/L	.0005	U	U	.0005	U	U	.0005	U	U	.0005	U	U
NITROARO	MATICS													
SW8	3330													
	1,3,5-Trinitrobenzene	mg/L	.0004	U	U				.0004	U	U	.0004	U	U
	1,3-Dinitrobenzene	mg/L	.0004	U	U				.0004	U	U	.0004	U	U
	2,4,6-Trinitrotoluene	mg/L	.0004	U	U				.0004	U	U	.0004	U	U
	2,4-Dinitrotoluene	mg/L	.0004	U	U				.0004	U	U	.0004	U	U

User Test Group Lab Method	Location Code: Associated Site: Sample No: Sample Date:	WSW-SOTS-ADM WSW XQ3002 17-OCT-00					
Parameter	_ Flt Units	Result	Qual	VQual			
METALS			_				
SW6010B							
Aluminum	mg/L	.2	U	U			
Antimony	mg/L	.1	U	U			
Arsenic	mg/L	.01	U	U			
Barium	mg/L	.00502	J	J			
Beryllium	mg/L	.001	U	U			
Cadmium	mg/L	.01	U	U			
Calcium	mg/L	32.7					
Chromium	mg/L	.01	U	U			
Cobalt	mg/L	.02	U	U			
Copper	mg/L	.00734	J	J			
Iron	mg/L	.0172	J	J			
Lead	mg/L	.00691	J	В			
Magnesium	mg/L	20					
Manganese	mg/L	.01	U	U			
Nickel	mg/L	.02	U	U			
Potassium	mg/L	5	U	U			
Selenium	mg/L	.01	U	U			
Silver	mg/L	.01	U	U			
Sodium	mg/L	.893	J	J			
Thallium	mg/L	.00614	J	J			
Vanadium	mg/L	.01	U	U			
Zinc	mg/L	.433					
SW7470A							
Mercury	mg/L	.0005	U	U			
NITROAROMATICS							
SW8330							
1,3,5-Trinitrobenzene	mg/L	.0004	U	U			
1,3-Dinitrobenzene	mg/L	.0004	U	U			
2,4,6-Trinitrotoluene	mg/L	.0004	U	U			
2,4-Dinitrotoluene	mg/L	.0004	U	U			

User Test Group	Location Code: Associated Site: Sample No: Sample Date:	WSW-FMR-SOTS WSW XQ3005 18-OCT-00		WSW-FMR-SOTS WSW XQ3024 13-FEB-03	WSW-RIDEOUT WSW XQ3003 17-OCT-00			WS XQ3	WSW-RNG-57 WSW XQ3001 17-OCT-00		
Lab Method		n 1.0	7 770 1		5 . 7.	0 1	110 1	D 7.	0 1		
Parameter		Result Qu	al <u>VQual</u>	Result Qual VQual	Result	Qual .	<u>VQual</u>	Result	<u>Qual</u>	<u>VQual</u>	
NITROAROMATICS											
SW8330		2024	**		2024		* 1	0004		**	
2,6-Dinitrotoluene	mg/L		U U		.0004	U	U	.0004	U	U	
2-Amino-4,6-dinitrotoluene	mg/L		U U		.0004	U	U	.0004	U	U	
2-Nitrotoluene	mg/L		U U		.0004	U	U	.0004	U	U	
3-Nitrotoluene	mg/L		U U		.0004	U	U	.0004	U	U	
4-Amino-2,6-dinitrotoluene	mg/L		U U		.0004	U	U	.0004	U	U	
HMX	mg/L		U U		.001	U	U	.001	U	U	
Nitrobenzene	mg/L		U U		.0004	U	U	.0004	U	U	
RDX	mg/L		U U		.0004	U	U	.0004	U	U	
Tetryl	mg/L		U U		.0004	U	U	.0004	U	U	
p-Nitrotoluene	mg/L	.0004	U U		.0004	U	U	.0004	U	U	
SEMIVOLATILES											
SW8270C											
1,2,4-Trichlorobenzene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
1,2-Dichlorobenzene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
1,3-Dichlorobenzene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
1,4-Dichlorobenzene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2,4,5-Trichlorophenol	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2,4,6-Trichlorophenol	mg/L	.027	U U		.024	U	U	.024	U	U	
2,4-Dichlorophenol	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2,4-Dimethylphenol	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2,4-Dinitrophenol	mg/L	.027	U U		.024	U	U	.024	U	U	
2,4-Dinitrotoluene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2,6-Dinitrotoluene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2-Chloronaphthalene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2-Chlorophenol	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2-Methylnaphthalene	mg/L	.011	U U		.0097	U	U	.0094	U	U	
2-Methylphenol	mg/L		U U		.0097	U	U	.0094	Ü	U	
2-Nitroaniline	mg/L		U U		.024	U	U	.024	Ü	U	
2-Nitrophenol	mg/L		U U		.0097	U	U	.0094	Ü	U	
3,3'-Dichlorobenzidine	mg/L		U U		.024	U	U	.024	U	U	
2,5 Zimoroommano		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-	-		Ü	-	

	Location Code: Associated Site: Sample No: Sample Date:	WSW-SOTS-ADM WSW XQ3002 17-OCT-00					
User Test Group Lab Method							
Parameter Parameter	Flt_ Units	Result	Oual	<u>VQual</u>			
NITROAROMATICS	<u> </u>		-2				
SW8330							
2,6-Dinitrotoluene	mg/L	.0004	U	U			
2-Amino-4,6-dinitrotoluene	mg/L	.0004	U	U			
2-Nitrotoluene	mg/L	.0004	U	U			
3-Nitrotoluene	mg/L	.0004	U	U			
4-Amino-2,6-dinitrotoluene	mg/L	.0004	U	U			
HMX	mg/L	.001	U	U			
Nitrobenzene	mg/L	.0004	U	U			
RDX	mg/L	.0004	U	U			
Tetryl	mg/L	.0004	U	U			
p-Nitrotoluene	mg/L	.0004	U	U			
SEMIVOLATILES							
SW8270C							
1,2,4-Trichlorobenzene	mg/L	.0095	U	U			
1,2-Dichlorobenzene	mg/L	.0095	U	U			
1,3-Dichlorobenzene	mg/L	.0095	U	U			
1,4-Dichlorobenzene	mg/L	.0095	U	U			
2,4,5-Trichlorophenol	mg/L	.0095	U	U			
2,4,6-Trichlorophenol	mg/L	.024	U	U			
2,4-Dichlorophenol	mg/L	.0095	U	U			
2,4-Dimethylphenol	mg/L	.0095	U	U			
2,4-Dinitrophenol	mg/L	.024	U	U			
2,4-Dinitrotoluene	mg/L	.0095	U	U			
2,6-Dinitrotoluene	mg/L	.0095	U	U			
2-Chloronaphthalene	$\mathrm{mg/L}$.0095	U	U			
2-Chlorophenol	mg/L	.0095	U	U			
2-Methylnaphthalene	mg/L	.0095	U	U			
2-Methylphenol	mg/L	.0095	U	U			
2-Nitroaniline	mg/L	.024	U	. U			
2-Nitrophenol	mg/L	.0095	U	U			
3,3'-Dichlorobenzidine	mg/L	.024	U	U			

Page: 5 of 12

Report Date: 05/15/03

Location Code: WSW-FMR-SOTS WSW-RIDEOUT WSW-RNG-57 WSW-FMR-SOTS WSW WSW WSW WSW Associated Site: XQ3005 XQ3024 XQ3003 XO3001 Sample No: 18-OCT-00 13-FEB-03 17-OCT-00 17-OCT-00 Sample Date: User Test Group Lab Method <u>Flt</u> Result Oual VOual Result Oual VOual Result Oual VOual Result Qual VQual Parameter Units **SEMIVOLATILES** SW8270C U U 3-Nitroaniline mg/L .027 U U .024 U .024 U U U U U 4,6-Dinitro-2-methylphenol mg/L .027 U .024 .024 U 4-Bromophenyl phenyl ether .011 U .0097 U U .0094 U U mg/L U U U U .0097 U .0094 U 4-Chloro-3-methylphenol mg/L .011 \mathbf{U} mg/L .011 U .0097 U U .0094 U 4-Chloroaniline U U U IJ U 4-Chlorophenyl phenyl ether mg/L .011 U .0097 .0094 U .011 U .0097 U U .0094 U U 4-Methylphenol mg/L U U 4-Nitroaniline .011 U U .0097 U U .0094 IJ mg/L U U U .027 .024 IJ .024 IJ 4-Nitrophenol mg/L U .011 U U .0097 U U .0094 U U Acenaphthene mg/L U U Acenaphthylene mg/L .011 U U .0097 U .0094 U U .0097 U U .0094 U U Anthracene mg/L .011 U U U .011 U .0097 U .0094 U Benzo(a)anthracene mg/L U U U U U Benzo(a)pyrene mg/L .011 U .0097 .0094 U U .0097 U U .0094 U U Benzo(b)fluoranthene mg/L .011 U Benzo(ghi)perylene mg/L .011 U U .0097H U .0094 IJ U U U U .011 .0097 U .0094 U Benzo(k)fluoranthene mg/L U U U U Bis(2-Chloroethoxy)methane .011 U .0097 U .0094 U mg/L U .0097 U .0094 U .011 IJ IJ Bis(2-Chloroethyl)ether mg/L U U .0097 U U .0094 U Bis(2-Chloroisopropyl)ether mg/L .011 U U .011 U U .0097 U U .0048 J Bis(2-Ethylhexyl)phthalate mg/L U U .0094 U .011 U .0097 U U Butyl benzyl phthalate mg/L .011 U U .0097 U U .0094 U Ū Carbazole mg/L U U mg/L .0097 U .0094 U Chrysene .011 U U U U Di-n-butyl phthalate mg/L .011 U .0097 U .0094 U U U U .0094 U Di-n-octyl phthalate mg/L .011 U .0097 U U U U U .0097 U .0094 U U Dibenz(a,h)anthracene mg/L .011 U U U Dibenzofuran mg/L .011 U .0097U .0094 U U U U .0097 U .0094 U Diethyl phthalate mg/L .011 U Dimethyl phthalate .011 U U .0097 U U .0094 U U mg/L U U U Fluoranthene .011 U .0097 U .0094 U mg/L

Page: 6 of 12

Report Date: 05/15/03

Location Code: WSW-SOTS-ADM

Associated Site: WSW

Sample No: XQ3002

Sample Date: 17-OCT-00

	Sampl	le Date:	17-OCT-00					
User Test Group	~p.							
Lab Method			D 1.	0 1	770 1			
<u>Parameter</u>	<i>Flt</i>	<u>Units</u> _	<u> </u>	Qual	<u>VQual</u>			
SEMIVOLATILES								
SW8270C								
3-Nitroaniline		mg/L	.024	U	U			
4,6-Dinitro-2-methylphenol		mg/L	.024	U	U			
4-Bromophenyl phenyl ether		mg/L	.0095	U	U			
4-Chloro-3-methylphenol		mg/L	.0095	U	U			
4-Chloroaniline		mg/L	.0095	U	U			
4-Chlorophenyl phenyl ether		mg/L	.0095	U	U			
4-Methylphenol		mg/L	.0095	U	U			
4-Nitroaniline		mg/L	.0095	U	U			
4-Nitrophenol		mg/L	.024	U	U			
Acenaphthene		mg/L	.0095	U	U			
Acenaphthylene		mg/L	.0095	U	U			
Anthracene		mg/L	.0095	U	U			
Benzo(a)anthracene		mg/L	.0095	U	U			
Benzo(a)pyrene		mg/L	.0095	U	U			
Benzo(b)fluoranthene		mg/L	.0095	U	U			
Benzo(ghi)perylene		mg/L	.0095	U	U			
Benzo(k)fluoranthene		mg/L	.0095	U	U			
Bis(2-Chloroethoxy)methane		mg/L	.0095	U	U			
Bis(2-Chloroethyl)ether		mg/L	.0095	U	U			
Bis(2-Chloroisopropyl)ether		mg/L	.0095	U	U			
Bis(2-Ethylhexyl)phthalate		mg/L	.0095	U	U			
Butyl benzyl phthalate		mg/L	.0095	U	U			
Carbazole		mg/L	.0095	U	U			
Chrysene		mg/L	.0095	U	U			
Di-n-butyl phthalate		mg/L	.0095	U	U			
Di-n-octyl phthalate		mg/L	.0095	U	U			
Dibenz(a,h)anthracene		mg/L	.0095	U	U			
Dibenzofuran		mg/L	.0095	U	U			
Diethyl phthalate		mg/L	.0095	Ü	U			
Dimethyl phthalate		mg/L	.0095	U	U			
Fluoranthene		mg/L	.0095	U	U			
* **********		<i></i>		~	_			

User Test Group Lab Method	Location Code: Associated Site: Sample No: Sample Date:	Associated Site: WSW Sample No: XQ3005		WSW-RIDEOUT WSW XQ3003 17-OCT-00	WSW-RNG-57 WSW XQ3001 17-OCT-00
Lao Metnoa Parameter	<u>Flt Units</u>	Result Qual VQual	Result <u>Qual</u> VQual	Result <u>Qual</u> VQual	Result <u>Qual</u> VQual
SEMIVOLATILES	<u>ru Onus</u>	nesini <u>Quai r Quai</u>	105mi Quui V Quui	nesun <u>yaar</u> 7 yaar	Resuit Quai r Quai
SW8270C					
Fluorene	mg/L	.011 U U		.0097 U U	.0094 U U
Hexachlorobenzene	mg/L	.011 U U		.0097 U U	.0094 U U
Hexachlorobutadiene	mg/L	.011 U U		.0097 U U	.0094 U U
Hexachlorocyclopentadi		.011 U U		.0097 U U	.0094 U U
Hexachloroethane	mg/L	.011 U U		.0097 U U	.0094 U U
Indeno(1,2,3-cd)pyrene	mg/L	.011 U U		.0097 U U	.0094 U U
Isophorone	mg/L	.011 U U		.0097 U U	.0094 U U
N-Nitroso-di-n-propylar	mine mg/L	.011 U U		.0097 U U	.0094 U U
N-Nitrosodiphenylamin	e mg/L	.011 U U		.0097 U U	.0094 U U
Naphthalene	mg/L	.011 U U		.0097 U U	.0094 U U
Nitrobenzene	mg/L	.011 U U		.0097 U U	.0094 U U
Pentachlorophenol	mg/L	.027 U U		.024 U U	.024 U U
Phenanthrene	mg/L	.011 U U		.0097 U U	.0094 U U
Phenol	mg/L	.011 U U		.0097 U U	.0094 U U
Pyrene	mg/L	.011 U U		.0097 U U	.0094 U U
VOLATILES					
SW8260B					
1,1,1,2-Tetrachloroethan	ne mg/L	.005 U U		.005 U U	.005 U U
1,1,1-Trichloroethane	mg/L	.005 U U		.005 U U	.005 U U
1,1,2,2-Tetrachloroethan	_	.005 U U		.005 U U	.005 U U
1,1,2-Trichloroethane	mg/L	.005 U U		.005 U U	.005 U U
1,1-Dichloroethane	mg/L	.005 U U		.005 U U	.005 U U
1,1-Dichloroethene	mg/L	.005 U U		.005 U U	.005 U U
1,1-Dichloropropene	mg/L	.005 U U		.005 U U	.005 U U
1,2,3-Trichlorobenzene	mg/L	.005 U U		.005 U U	.005 U U
1,2,3-Trichloropropane	mg/L	.005 U U		.005 U U	.005 U U
1,2,4-Trichlorobenzene	mg/L	.005 U U		.005 U U	.005 U U
1,2,4-Trimethylbenzene	•	.005 U U		.005 U U	.005 U U
1,2-Dibromo-3-Chlorop	•	.01 U U		.01 U U	.01 U U
1,2-Dibromoethane	mg/L	.005 U U		.005 U U	.005 U U

	Location Code: Associated Site: Sample No: Sample Date:	WSW-SC WS XQ3 17-00	M	
User Test Group Lab Method				
Parameter	<u> Flt</u> Units	Result	Oual	VQual
SEMIVOLATILES			_	
SW8270C				
Fluorene	mg/L	.0095	U	U
Hexachlorobenzene	mg/L	.0095	U	U
Hexachlorobutadiene	mg/L	.0095	U	U
Hexachlorocyclopentadiene	mg/L	.0095	U	U
Hexachloroethane	mg/L	.0095	U	U
Indeno(1,2,3-cd)pyrene	mg/L	.0095	U	U
Isophorone	mg/L	.0095	U	U
N-Nitroso-di-n-propylamine	mg/L	.0095	U	U
N-Nitrosodiphenylamine	mg/L	.0095	U	U
Naphthalene	mg/L	.0095	U	U
Nitrobenzene	mg/L	.0095	U	U
Pentachlorophenol	mg/L	.024	U	U
Phenanthrene	mg/L	.0095	U	U
Phenol	mg/L	.0095	U	U
Pyrene	mg/L	.0095	U	U
VOLATILES				
SW8260B				
1,1,2-Tetrachloroethane	mg/L	.005	U	U
1,1,1-Trichloroethane	mg/L	.005	U	U
1,1,2,2-Tetrachloroethane	mg/L	.005	U	U
1,1,2-Trichloroethane	mg/L	.005	U	U
1,1-Dichloroethane	mg/L	.005	U	U
1,1-Dichloroethene	mg/L	.005	U	U
1,1-Dichloropropene	mg/L	.005	U	U
1,2,3-Trichlorobenzene	mg/L	.005	U	U
1,2,3-Trichloropropane	mg/L	.005	U	U
1,2,4-Trichlorobenzene	mg/L	.005	U	U
1,2,4-Trimethylbenzene	mg/L	.005	U	U
1,2-Dibromo-3-Chloropropane	mg/L	.01	U	U
1,2-Dibromoethane	mg/L	.005	U	U

User Test Group		Location Code: Associated Site: Sample No: Sample Date:	Associated Site: WSW Sample No: XQ3005		WSW-FMR-SOTS WSW XQ3024 13-FEB-03	WSW-RIDEOUT WSW XQ3003 17-OCT-00			W XQ	WSW-RNG-57 WSW XQ3001 17-OCT-00		
Lab Me		<u> Flt Units</u> _	Rosult	Qual	VQual	Result Qual VQual	Result	Qual	VOual	Result	Quai	VQual
VOLATILES	Parameter		пезии	Quai	<u>ryuui</u> _	Result Qual V Qual	ПСВИП	Quui	<u>r Quui</u>	Result	Quai	<u>r y uui</u>
SW8260	nr.											
5170200	1,2-Dichlorobenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,2-Dichloroethane	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,2-Dichloropropane	mg/L	.005	U	U		.005	U	U	.005		U
	1,2-Dimethylbenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,3,5-Trimethylbenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,3-Dichlorobenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,3-Dichloropropane	mg/L	.005	U	U		.005	U	U	.005	U	U
	1,4-Dichlorobenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	2-Butanone	mg/L	.02	U	U		.02	U	U	.02	U	U
	2-Hexanone	mg/L	.02	U	U		.02	U	U	.02	U	U
	4-Methyl-2-pentanone	mg/L	.01	U	U		.01	U	U	.01	U	U
	Acetone	mg/L	.02	U	U		.02	U	U	.02	U	U
	Benzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	Bromobenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	Bromochloromethane	mg/L	.005	U	U		.005	U	U	.005	U	U
	Bromodichloromethane	mg/L	.005	U	U		.005	U	U	.005	U	U
	Bromoform	mg/L	.005	U	U		.005	U	U	.005	U	U
	Bromomethane	mg/L	.005	U	U		.005	U	U	.005	U	U
	Carbon disulfide	mg/L	.005	U	U		.005	U	U	.005		U
	Carbon tetrachloride	mg/L	.005	U	U		.005	U	U	.005	U	U
	Chlorobenzene	mg/L	.005	U	U		.005	U	U	.005	U	U
	Chloroethane	mg/L	.005	U	U		.005	U	U	.005	U	U
	Chloroform	mg/L	.0013	J	J		.005	U	U	.005	U	U
	Chloromethane	mg/L	.005	U	U		.005	U	U	.005	_	U
	Cis-1,2-Dichloroethene	mg/L	.005	U	U		.005	U	U	.005	U	U
	Cis-1,3-Dichloropropene	mg/L	.005	U	U		.005	U	U	.005		U
	Cumene	mg/L	.005	U	U		.005	U	U	.005	_	U
	Dibromochloromethane	mg/L	.005	U	U		.005	U	U	.005	_	U
	Dibromomethane	mg/L	.005	U	U		.005	U	U	.005		U
	Dichlorodifluoromethane	mg/L	.005	U	U		.005	U	U	.005		U
	Ethylbenzene	mg/L	.005	U	U		.005	U	U	.005	U	U

Report Date: 05/15/03 Page: 10 of 12

Location Code:

WSW-SOTS-ADM

Associated Site:

WSW

Sample No:

XQ3002

Sample Date:

17-OCT-00

User Test Group Lab Method	Битрі	c Daic.			
Parameter	$_{\it Flt}$	Units	Result	Oual	<u>VQual</u>
VOLATILES		Omis			
SW8260B					
1,2-Dichlorobenzene		mg/L	.005	U	U
1,2-Dichloroethane		mg/L	.005	U	U
1,2-Dichloropropane		mg/L	.005	U	U
1,2-Dimethylbenzene		mg/L	.005	U	U
1,3,5-Trimethylbenzene		mg/L	.005	U	U
1,3-Dichlorobenzene		mg/L	.005	U	U
1,3-Dichloropropane		mg/L	.005	U	U
1,4-Dichlorobenzene		mg/L	.005	U	U
2-Butanone		mg/L	.02	U	U
2-Hexanone		mg/L	.02	U	U
4-Methyl-2-pentanone		mg/L	.01	U	U
Acetone		mg/L	.02	U	U
Benzene		mg/L	.005	U	U
Bromobenzene		mg/L	.005	U	U
Bromochloromethane		mg/L	.005	U	U
Bromodichloromethane		mg/L	.005	U	U
Bromoform		mg/L	.005	U	U
Bromomethane		mg/L	.005	U	U
Carbon disulfide		mg/L	.005	U	U
Carbon tetrachloride		mg/L	.005	U	U
Chlorobenzene		mg/L	.005	U	U
Chloroethane		mg/L	.005	U	U
Chloroform		mg/L	.005	U	U
Chloromethane		mg/L	.005	U	U
Cis-1,2-Dichloroethene		mg/L	.005	U	U
Cis-1,3-Dichloropropene		mg/L	.005	U	U
Cumene		mg/L	.005	U	U
Dibromochloromethane		mg/L	.005	U	U
Dibromomethane		mg/L	.005	U	U
Dichlorodifluoromethane		mg/L	.005	U	U
Ethylbenzene		mg/L	.005	U	U

User Test Grou	n	_		WSW-FMR-SOTS WSW XQ3005 18-OCT-00		S	WSW-FMR-SOTS WSW-RIDEOUT WSW WSW XQ3024 XQ3003 13-FEB-03 17-OCT-00			WS XQ3	WSW-RNG-57 WSW XQ3001 17-OCT-00		
Lab Meti													
	Parameter	<i>Flt</i> _	Units _	<u>Result</u>	<u>Qual</u>	<u>VQual</u>	<u>Result Qual VQual</u>	Result	Qual	<u>VQual</u>	Result	<u>Qual</u>	<u>VQual</u>
VOLATILES													
SW8260B	1												
F	Hexachlorobutadiene		mg/L	.005	U	U		.005	U	U	.005	U	U
N	Methylene chloride		mg/L	.005	U	U		.005	U	U	.005	U	U
N	N-Butylbenzene		mg/L	.005	U	U		.005	U	U	.005	U	U
Ŋ	N-Propylbenzene		mg/L	.005	U	U		.005	U	U	.005	U	U
Ŋ	Naphthalene		mg/L	.005	U	U		.005	U	U	.005	U	U
S	Styrene		mg/L	.005	U	U		.005	U	U	.005	U	U
Т	Tetrachloroethene		mg/L	.005	U	U		.005	U	U	.005	U	U
7	Foluene .		mg/L	.005	U	U		.005	U	U	.005	U	U
Т	Frans-1,2-Dichloroethene		mg/L	.005	U	U		.005	U	Ŭ	.005	U	U
Г	Frans-1,3-Dichloropropene		mg/L	.005	U	U		.005	U	U	.005	U	U
7	Prichloroethene		mg/L	.005	U	U		.005	U	U	.005	U	U
7	Prichlorofluoromethane		mg/L	.005	U	U		.005	U	U	.005	U	U
7	Vinyl chloride		mg/L	.005	U	U		.005	U	U	.005	U	U
n	n,p-Xylenes		mg/L	.01	U	U		.01	U	U	.01	U	U
C	o-Chlorotoluene		mg/L	.005	U	U		.005	U	U	.005	U	U
ŗ	o-Chlorotoluene		mg/L	.005	U	U		.005	U	U	.005	U	U
- T	o-Cymene		mg/L	.005	U	U		.005	U	U	.005	U	U
-	sec-Butylbenzene		mg/L	.005	U	U		.005	U	U	.005	U	U
	sec-Dichloropropane		mg/L	.005	U	U		.005	U	U	.005	U	U
t	ert-Butylbenzene		mg/L	.005	U	U		.005	U	U	.005	U	U

Report Date: 05/15/03 Page: 12 of 12

Location Code:

WSW-SOTS-ADM

Associated Site:

WSW

Sample No:

XQ3002

Sample Date:

17-OCT-00

User Test Group

Lab Method				
Parameter	<u> Flt Units</u>	Result Q	<u>Qual</u> <u>VQual</u>	<u>!</u>
VOLATILES				
SW8260B				
Hexachlorobutadiene	mg/L	.005	U U	
Methylene chloride	mg/L	.005	U U	
N-Butylbenzene	mg/L	.005	U U	
N-Propylbenzene	mg/L	.005	U U	
Naphthalene	mg/L	.005	U U	
Styrene	mg/L	.005	U U	
Tetrachloroethene	mg/L	.005	U U	
Toluene	mg/L	.005	U U	
Trans-1,2-Dichloroethene	mg/L	.005	U U	
Trans-1,3-Dichloropropene	mg/L	.005	U U	
Trichloroethene	mg/L	.005	U U	
Trichlorofluoromethane	mg/L	.005	U U	
Vinyl chloride	mg/L	.005	U U	
m,p-Xylenes	mg/L	.01	U U	
o-Chlorotoluene	mg/L	.005	U U	
p-Chlorotoluene	mg/L	.005	U U	
p-Cymene	mg/L	.005	U U	
sec-Butylbenzene	mg/L	.005	U U	
sec-Dichloropropane	mg/L	.005	U U	
tert-Butylbenzene	mg/L	.005	U U	